

Indiana Crop & Weather Report

INDIANA AGRICULTURAL STATISTICS U.S. DEPARTMENT OF AGRICULTURE PURDUE UNIVERSITY 1148 AGAD BLDG, ROOM 223 WEST LAFAYETTE IN 47907-1148 Phone (765)494-8371 (800)363-0469 FAX (765)494-4315 (800)363-0475

Released: Monday, 3PM June 1, 1998 Vol. 48, #9

West Lafayette, IN 47907

CROP REPORT FOR WEEK ENDING MAY 31

Corn and soybean planting continued to progress, according to the Indiana Agricultural Statistics Service. Soybean planting advanced 18 percent and corn planting made modest progress as producers in the southern region continue to face weather-related delays. In contrast, the northern region of the state is rapidly drying out, leaving farmers looking for rain.

CORN AND SOYBEANS

Corn planting is 90 percent complete, behind 98 percent last year, but ahead of the 82 percent average for this date. By region, corn planting is 98 percent complete in the north, 92 percent complete in the central, and 69 percent complete in the south. Seventy-six percent of the corn is emerged. By region, 85 percent is emerged in the north, 80 percent in the central, and 48 percent in the south. Soybean planting is 69 percent complete, well behind 86 percent last year, but 10 percent ahead of the average. By region, soybean planting is 86 percent complete in the north, 70 percent complete in the central, and 36 percent complete in the south. Forty-one percent of the soybean crop is emerged. By region, 53 percent is emerged in the north, 40 percent in the central, and 22 percent in the south.

WINTER WHEAT

Ninety-nine percent of the **winter wheat** acreage is **headed**, well ahead of 60 percent last year and more than 2 weeks ahead of normal. Winter wheat **condition** is rated 71 percent good to excellent, a decrease of 11 percent from last week. There have been some reports of lodging.

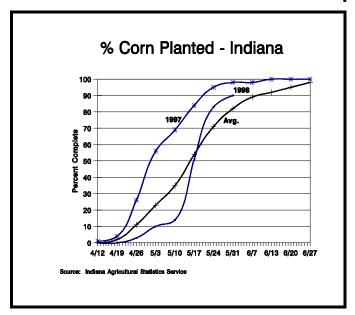
OTHER CROPS

Pasture condition is rated 18 percent excellent, 62 percent good, 18 percent fair and 2 percent poor. Transplanting of **tobacco** is 26 percent complete. First cutting of **alfalfa** is 57 percent complete.

DAYS SUITABLE and SOIL MOISTURE

For the week ending Friday, 4.0 days were rated **suitable for fieldwork**. **Topsoil moisture** was rated 4 percent very short, 14 percent short, 54 percent adequate and 28 percent surplus. **Subsoil moisture** was rated 2 percent very short, 8 percent short, 69 percent adequate and 21 percent surplus.

CROP PROGRESS							
Crop	This Week	Last Week	Last Year	5-Year Avg			
	Percent						
Corn Planted	90	83	98	82			
Corn Emerged	76	44	NA	NA			
Soybeans Planted	69	51	86	59			
Soybeans Emerged	41	16	NA	NA			
Winter Wheat Headed	99	90	60	68			


CROP CONDITION							
Crop	Very Poor	Poor	Fair	Good	Excel- lent		
	Percent						
Corn	2	3	25	59	11		
Winter Wheat 5/31	1	6	22	52	19		
Winter Wheat 1997	0	22	41	26	4		
Pasture	0	2	18	62	18		

SOIL MOISTURE							
	This Week	Last Week	Last Year				
		Percent					
Topsoil							
Very Short	4	2	0				
Short	14	14	1				
Adequate	54	62	54				
Surplus	28	22	45				
Subsoil							
Very Short	2	1	0				
Short	8	6	3				
Adequate	69	79	69				
Surplus	21	14	28				

--Ralph W. Gann, State Statistician

⁻⁻Lance Honig, Agricultural StatisticianE-Mail Address: nass-in@nass.usda.govhttp://info.aes.purdue.edu/agstat/nass.html

Crop Progress

Keep an Eye on those Corn Plants!

By now, you probably have most of your corn in the ground, some for maybe the second time. If it has not emerged yet, it will soon. Stand establishment uniformity and vigor play an important role in determining the ultimate yield potential for a field. Mixtures of gaps and crowded plants can easily decrease yields by 5 to 7 bushels per acre. Uneven emergence can result in yield losses of 8 to 20 percent.

Take the time to walk fields during the next week or two and take thorough notes on stand establishment problems that may exist. Here's a check list for note taking.

- Are the plant-to-plant spacings uniform or variable? If variable, try to determine whether the cause is related to planter accuracy (gaps, doubles, both) or simply stand loss from pests or weather (gaps).
- Are the plant populations equal to your pre-planting objective? If too high, the blame lies with the planter and/or the planter operator. If too low, the culprit may still be the planter but more likely is related to pest or weather factors.
- ✓ Shortly after emergence (1- to 2-leaf collar stage), assess the uniformity of plant development and use it as a gauge for the uniformity of emergence. If the overwhelming majority of the plants are the same leaf stage, treat yourself to coffee and donuts at the Chat 'n Chew Café. On the other hand, if there is a great deal of variability among the plants for leaf stage, it is likely an indicator that emergence did not occur uniformly. The primary cause of uneven emergence is usually variable soil moisture in the seed zone, but variable soil temperature and see-to-soil contact can also play important roles. Poor seed-to-soil contact could

- easily have occurred in cloddy seed beds planted in recent weeks.
- After about the 5-leaf collar stage of development, assess the uniformity of plant growth and development across the field. If all the plants are uniform height and color, treat yourself to coffee and donuts at the Chat 'n Chew Café. If uneven, try to determine whether to blame variable emergence (see previous bullet) or subsequent variable growth and development. The latter is likely caused by one or more factors that are restricting root development (variable soil moisture or temperature, soil compaction, or injury from certain herbicides, insects or diseases). At this point in 1998, common culprits include ponded or simply saturated areas of fields and soil compaction.

If you are into site-specific crop management, then recording and mapping GPS-based information relative to stand establishment uniformity and vigor will be time well spent when it comes around to interpreting yield data after harvest this fall. Problems with stand establishment commonly influence final yield, yet are also commonly overlooked at the end of the season when trying to perform a "post-mortem" analysis of low or variable yields.

Don't forget, this and other timely information about corn can be viewed at the Chat 'n Chew Café on the World Wide Web at http://www.agry.purdue.edu/agronomy/ext/corn/chatchew.htm. For other information about corn, take a look at the Corn Growers' Guidebook on the World Wide Web at http://www.agry.purdue.edu/agronomy/ext/corn/

--Bob Nielsen, Professor of Agronomy, Purdue University

Average Daily Values for week ending Monday morning June 1, 1998

			Air		Precipitation			Growing Degree Days			
Area	Station	Temperature		Past	Since	DN Since	Past	Since	DN Since		
		Max	Min	DN	Week	April 1	April 1	Week	April 1	April 1	
NW	Wanatah	84	57	+7	.01	7.51	01	148	690	+236	
	Kentland	83	60	+6	.23	9.27	+1.72	150	756	+212	
	Winamac	83	58	+6	.00	7.15	16	144	723	+184	
NC	South Bend	81	58	+5	.00	6.66	49	140	682	+211	
	Waterford Mills	84	55	+5	.84	7.10	+.36	139	733	+228	
NE	Prairie Heights	83	58	+8	.35	7.06	10	143	724	+305	
	Columbia City	82	57	+6	.05	6.80	45	140	705	+227	
	Fort Wayne	84	59	+7	.54	7.81	+.90	148	727	+217	
	Bluffton	83	60	+6	.05	7.14	29	150	744	+197	
WC	West Lafayette	83	61	+7	.07	10.05	+2.40	153	766	+235	
	Perrysville	81	62	+4	1.25	11.45	+2.65	154	794	+104	
	Crawfordsville	82	58	+5	.30	9.00	+1.45	141	737	+200	
	Terre Haute 8s	85	64	+7	.20	9.64	+1.25	165	880	+249	
С	Tipton	80	58	+4	.01	9.95	+2.20	135	689	+178	
	Indianapolis	80	62	+4	.10	11.67	+3.91	149	797	+175	
	Indian Creek	81	60	+5	.19	10.90	+2.50	144	815	+211	
EC	Farmland	81	59	+6	.54	9.33	+1.85	145	742	+247	
	Liberty	81	59	+5	.20	11.32	+2.77	143	760	+153	
SW	Vincennes	84	62	+5	1.41	16.29	+7.32	158	853	+183	
	Dubois	82	61	+5	.64	14.10	+4.98	151	823	+177	
	Evansville	84	65	+5	.31	14.37	+5.53	170	910	+140	
SC	Bedford	81	61	+5	.39	19.60	+10.69	151	797	+171	
	Louisville	83	67	+6	1.03	11.67	+2.78	177	939	+181	
SE	Butlerville	81	61	+4	.56	14.12	+5.56	150	812	+100	

DN = departure from normal.

Growing Degree Days = daily mean - 50 (below 50 adjusted to 50, above 86 adjusted to 86.)

Maps are unavailable for June 1, 1998

Prepare Grain Bins for Wheat, Now

- Stored grain insect infestations usually begin from poor sanitation
- Procedures are given to prevent infestations
- Now is the time to carry through these procedures

The 1998 wheat crop is looking good and harvest will soon be here. Preparing bins for storage now goes a long way toward preventing insect infestations during the summer. Several species of insects may infest grain in storage. The principal insects that cause damage are the adult and larval stages of beetles, and the larval stage of moths. Damage by these insects includes reducing grain weight and nutritional value; causing contamination (alive or dead); odor, mold, and heat damage problems that reduce the quality of the grain.

Newly harvested wheat may become infested with insects when it comes in contact with previously infested grain in combines, truck beds, wagons, other grain handling equipment, augers, bucket lifts, grain dumps, or grain already in the bin. Insects may also crawl or fly into grain bins from nearby accumulations of old contaminated grain, livestock feeds, bags, litter, or any other cereal products.

Insect infestations can be prevented with good management practices. Now that many grain bins are empty, the following guidelines should be used before the 1998 grain is placed in bins:

Brush, sweep out and/or vacuum the combine, truck beds, transport wagons, grain dumps, augers, and elevator buckets to remove insectinfested grain and debris.

- ✓ In empty bins, thoroughly sweep or brush down walls, ceilings, ledges, rafters, braces, and handling equipment and remove debris from bins.
- ✓ Inside cleaned bins, spray wall surfaces, ledges, braces, rafters, and floors with an approved insecticide (Chlorpyrifos-methyl, methoxychlor, cyfluthrin or diatomaceous earth) creating a perimeter barrier. Outside, complete this barrier by treating the bases and walls up to 15 feet high, plus the soil around the bins.
- Remove all debris from fans, exhausts, and aeration ducts (also from beneath slotted floors, when possible).
- Remove all debris from the storage site and dispose of it properly according to area, state, and/or federal guidelines (this debris usually contains insect eggs, larvae, pupae, and/or adults, ready to infest the newly harvested grain).
- Remove all vegetation growing within ten feet of the bins (preferably the whole storage area). Then spray the cleaned area around bins with a residual herbicide to remove all undesirable weedy plants.
- Repair and seal all damaged areas to the grain storage structure. This is not only to prevent insect migration into the bin, but also to prevent water leakage, which leads to mold growth.
- Do not store newly harvested grain on old grain already in storage.
- Whenever fans are not operated, they should be covered and sealed. This reduces the opportunity for insects and vertebrates to enter the bin through the aeration system.

--Linda Mason and John Obermeyer, Purdue University

The INDIANA CROP WEATHER REPORT (USPS 675-770), (ISSN 0442-817X) is issued weekly April through November by the Indiana Agricultural Statistics Service, Purdue University, 1148 AgAd Bldg, Rm 223, West Lafayette IN 47907-1148. Second Class postage paid at Lafayette IN. For information on subscribing, send request to above address. POSTMASTER: Send address change to the Indiana Agricultural Statistics Service, Purdue University, 1148 AgAd Bldg, Rm 223, West Lafayette IN 47907-1148.